首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14862篇
  免费   1136篇
  国内免费   1309篇
化学   15863篇
晶体学   252篇
力学   24篇
综合类   55篇
数学   156篇
物理学   957篇
  2024年   5篇
  2023年   122篇
  2022年   182篇
  2021年   354篇
  2020年   536篇
  2019年   441篇
  2018年   349篇
  2017年   372篇
  2016年   487篇
  2015年   405篇
  2014年   500篇
  2013年   1034篇
  2012年   1555篇
  2011年   688篇
  2010年   593篇
  2009年   784篇
  2008年   881篇
  2007年   1024篇
  2006年   836篇
  2005年   791篇
  2004年   733篇
  2003年   666篇
  2002年   513篇
  2001年   438篇
  2000年   316篇
  1999年   277篇
  1998年   232篇
  1997年   330篇
  1996年   337篇
  1995年   344篇
  1994年   240篇
  1993年   196篇
  1992年   168篇
  1991年   116篇
  1990年   71篇
  1989年   53篇
  1988年   55篇
  1987年   46篇
  1986年   41篇
  1985年   33篇
  1984年   35篇
  1983年   13篇
  1982年   27篇
  1981年   15篇
  1980年   19篇
  1979年   15篇
  1978年   9篇
  1977年   7篇
  1975年   4篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The synthesis of hyper-branched ethene oligomers through catalytic insertion reactions with late transition metal catalysts is unique in its synthetic and practical scope. In this study, a series of iminopyridyl Ni(II) and Pd(II) complexes with electron-rich distal aryl motifs were synthesized and characterized. These complexes were very efficient in ethene oligomerization and co-oligomerization with methyl acrylate (MA). Hyperbranched ethene oligomers with different microstructures were generated using different metal species in ethene oligomerization. More importantly, hyperbranched ethene-MA co-oligomers with varying incorporation ratios were generated via ethene and MA co-oligomerization using the Pd(II) complexes. Most notably, weak neighboring group interactions of distal aryl motifs in the nickel system are more effective in influencing the microstructure of ethene oligomers than the corresponding palladium system.  相似文献   
92.
93.
The synthesis of a metal–organic framework (UiO‐67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one‐pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X‐ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO‐67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl]2?; bpydc=2,2′‐bipyridine‐5,5′‐dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre‐functionalisation methodology.  相似文献   
94.
A novel AB type of clickable monomer, (S)‐2‐[(2‐azido‐1‐phenylethylimino)methyl]‐5‐propargyloxyphenol (AMPP) was designed and polymerized to yield a class of main‐chain chiral poly(imine‐triazole)s through the metal‐free click reaction. With the thermally induced polymerization, the desired polytriazoles can be easily prepared in high yields by a stepwise heating‐up process and have the number‐average molecular masses ranging from 5.1 × 103 to 58.1 × 103 (polydispersity indices = 1.38?1.68). The polymers were characterized by Fourier Transform Infrared spectroscopy (FTIR), 1H Nuclear Magnetic Resonance (NMR), and gel permeation chromatography, and their optical properties were studied by fluorescence and circular dichroism (CD) spectroscopies. As a chemosensor, these polymers exhibited a selective “turn‐on” fluorescence enhancement response toward Zn2+ ion over other cations such as Na+, K+, Mg2+, Ca2+, Ag+, Pb2+, Cd2+, Hg2+, Mn2+, and Ni2+ in dimethyl sulfoxide. However, the Zn2+‐induced fluorescence signal was subject to serious interference by Al3+, Cu2+, Cr3+, and Fe3+ ions. Interestingly, the chiral polymer showed distinctive changes in the CD spectra on complexation with Zn2+, which allowed for the discrimination of this ion in the presence of other species tested including those interfering ions observed in the fluorescent detection. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2248–2257  相似文献   
95.
96.
Group 4 complexes 1 – 3 [ 1 = (t‐BuOS)2Ti(O‐i‐Pr)2; 2 = (t‐BuOS)2Zr(O‐t‐Bu)2; 3 = (t‐BuOS)2Hf(O‐t‐Bu)2] supported by two phenolate bidentate ligands (t‐BuOS‐H = 4,6‐di‐tert‐butyl‐2‐phenylsulfanylphenol) promote the well‐controlled ring opening polymerization of rac‐β‐butyrolactone. In presence of isopropanol, low dispersities and molecular weights proportional to the equivalents of isopropanol are achieved. Moreover, the zirconium complex is effective in the copolymerization of rac‐β‐butyrolactone with rac‐lactide. The 13 C nuclear magnetic resonance analysis revealed that the obtained copolymers have a tapered diblock microstructure consisting of an initial block composed of lactide sequences and a terminal block composed of butyrolactone sequences. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3132–3139  相似文献   
97.
The first Negishi cross‐coupling of amides for the synthesis of versatile diaryl ketones by selective C?N bond activation under exceedingly mild conditions is reported. The cross‐coupling was accomplished with bench‐stable, inexpensive precatalyst [Ni(PPh3)2Cl2] that shows high functional‐group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N?C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional‐group tolerance of organozinc reagents, this strategy provides a new platform for amide N?C bond/organozinc cross‐coupling under mild conditions.  相似文献   
98.
The CXCR4 chemokine receptor is implicated in a number of diseases including HIV infection and cancer development and metastasis. Previous studies have demonstrated that configurationally restricted bis‐tetraazamacrocyclic metal complexes are high‐affinity CXCR4 antagonists. Here, we present the synthesis of Cu2+ and Zn2+ acetate complexes of six cross‐bridged tetraazamacrocycles to mimic their coordination interaction with the aspartate side chains known to bind them to CXCR4. X‐ray crystal structures for three new Cu2+ acetate complexes and two new Zn2+ acetate complexes demonstrate metal‐ion‐dependent differences in the mode of binding the acetate ligand concomitantly with the requisite cis‐V‐configured cross‐bridged tetraazamacrocyle. Concurrent density functional theory molecular modelling studies produced an energetic rationale for the unexpected [Zn(OAc)(H2O)]+ coordination motif present in all of the Zn2+ cross‐bridged tetraazamacrocycle crystal structures, which differs from the chelating acetate [Zn(OAc)]+ structures of known unbridged and side‐bridged tetraazamacrocyclic Zn2+‐containing CXCR4 antagonists.  相似文献   
99.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
100.
An emerging area of homogeneous catalysis is the use of catalysts featuring two closely associated metal sites. This approach complements the traditional focus on single‐site catalysts and makes available new parameters with which to optimize catalytic behavior. Single‐site catalysts are optimized through changing 1) the identity of the metal, and 2) the steric and electronic properties of the ligands. Bimetallic catalysts introduce new optimization parameters such as 3) catalyst nuclearity (mononuclear vs. binuclear), and 4) bimetallic pairing (relative compatibility of two metal sites). In order to harness these new optimization parameters in developing systems, it is necessary to first understand the origin of bimetallic selectivity effects that already have been documented. This Concept article highlights bimetallic effects on the chemo‐, regio‐, and stereoselectivity of catalytic transformations, using selected case studies from the recent literature as illustrative examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号